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Abstract 

A general derivation of the (anharmonic) temperature 
factor is given. The crystal is treated as a giant 
molecule of periodic structure. The temperature fac- 
tor is the Fourier transform of the three-dimensional 
marginal distribution that is obtained from the joint 
distribution of the positions of all atoms in the crystal. 
It is shown that coupling of the motions of different 
atoms, as expressed in the joint distribution, is projec- 
ted into the marginal distributions of the individual 
atoms, and, hence, into the temperature factors. 
Explicit coupling terms in the expression for the 
Bragg intensity are not needed; structure factors are 
always sufficient. Positional parameters are shown to 
have no other immediate meaning than the designa- 
tion of the origin of the vibrational coordinates in 
the unit cell. 

Introduction 

Rigorous derivations of the temperature factor 
(abbreviated t.f.) have been given only in the har- 
monic approximation of lattice dynamics (James, 
1948; von Laue, 1948; Cochran & Cowley, 1967; 
Willis & Pryor, 1975). Anharmonic lattice dynamics 
are much more complicated, and several approxima- 
tions are usually introduced (Krivoglaz & Tekhonova, 
1961; Maradudin & Flinn, 1963; Kashiwase, 1965; 
Wolfe & Goodman, 1969). In these calculations, an 
attempt is made to derive expressions for the Debye- 
Waller factor (t.f.), but not for the respective anhar- 
monic probability density function (p.d.f.). Since all 
the lattice-dynamical calculations give the t.f. in 
exponential form, the respective p.d.f.'s as in- 
verse Fourier transforms of the t.f.'s are not known 
analytically. However, from a theorem given by 
Marcinkiewicz (1938) and extended by Gromes 
(1984, private communication), it is known that these 
p.d.f.'s always have negative regions (Scheringer, 1985 ). 
This is physically unsatisfactory. 

Another question is whether or not anharmonicity 
of thermal motions poses the need to introduce coup- 
ling terms which join the t.f.'s of two different atoms 
in the expression for the Bragg intensity. Such coup- 
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ling terms were found by Kashiwase [1965, equation 
(2.24)] in his lattice-dynamical derivation. Such coup- 
ling terms were also used by Pryor & Sanger [1970, 
Appendix 3, equations (A3.7)-(A3.9)] in the 
refinement of urea, but the respective parameters were 
all found to be smaller than their e.s.d.'s. Explicit 
coupling terms imply that the Bragg intensities can 
no longer be represented by structure factors, i.e. 
I(Bragg) = FF* would be insufficient. The question 
arises whether or not I(Bragg) = FF* is sufficient in 
every case and, if it is, how the effects of interatomic 
coupling are represented in the t.f.'s and structure 
factors. 

A further matter of practical interest is the fact that 
the positional parameters obtained in a refinement 
do not always designate the mean positions. This 
situation occurs when the t.f. used has first-order 
terms in the reciprocal-lattice vector Q (Scheringer, 
1986). A general derivation of the (anharmonic) t.f. 
should formally contain this result. 

In this paper, the t.f. will be established as the 
Fourier transform of the p.d.f., including anharmonic 
motions, but the form of the p.d.f, will not be 
specified. It will be shown that the effects of coupled 
motions of different atoms are formally included in 
the p.d.f, and the t.f. The fact that the positional 
parameters can have many different meanings will be 
a by-product of the derivation given here. 

Derivation of the temperature factor 

The derivation given here is an expansion of the 
following statements: 

(i) Bragg scattering is coherent elastic scattering 
by crystals. 

(ii) For large ensembles (crystals), elastic scatter- 
ing is scattering by the thermodynamic average 
density. 

(iii) In a crystal, the thermodynamic average 
density is periodic. 

(iv) The scattering units are particles of spherical 
symmetry that do not change their shape during ther- 
mal motion. 

(i) may be considered as a definition of Bragg 
scattering. This definition places us in agreement with 
all lattice-dynamical approaches in which Bragg 
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scattering is classified as elastic (zero-order phonon 
scattering), and thermal diffuse scattering (TDS) is 
classified as inelastic (higher-order phonon scatter- 
ing). The validity of (ii) for large ensembles has been 
shown to hold very generally by Van Hove [1954, 
equations (19) and (23)], and by Marshall & Lovesey 
[1971, pp. 23-24 and equations (3.5) and (3.30)] for 
neutrons, and by Stewart & Feil [1980, equations (1), 
(11), (14)-(16)] and Scheringer [1980, equation (7)] 
for X-rays. For the case of static disorder, von Laue 
[1948, equation (20.8)] has shown that Bragg 
intensities can be understood as scattering by the 
average density of the crystal. (iii) is self-evident. If 
the thermodynamic average is not periodic, the solid 
is not a crystal. (iv) represents the so-called convol- 
ution approximation. Spherical symmetry is not 
necessary if, instead, it is required that the particles 
perform translational motions only (and not rotations 
as occur with librations of molecules); see Scheringer 
(1978). The crystal is treated as a giant molecule in 
which the external motions are eliminated. 

The derivation will be performed in the following 
steps. Firstly, using the validity of (ii), we calculate 
the scattering amplitude and Bragg intensity from the 
thermodynamic average. Secondly, the convolution 
approximation is introduced, and finally the condi- 
tion of periodicity is imposed. 

Since we wish to include neutron scattering and 
scattering from M/Sssbauer radiation in our consider- 
tion, and the scattering events are not short compared 
with the time periods of the lattice vibrations, we 
calculate the thermal average as the average of the 
canonical ensemble representing the crystal. As is 
always assumed in statistical mechanics, this average 
is equal to the average over the (long) time of observa- 
tion. The ensemble average is given by 

p(X)av = ~ P~p,, (x), ( la )  
n l  

where m denotes a state of vibrational energy of the 
ensemble, Pm is the probability of its occurrence (a 
Boltzmann factor) with Y.,~ Pm= 1, and pro(x) is the 
density distribution for the state m. Since we are not 
primarily interested in energies but rather in configur- 
ations of the lattice, we introduce coordinates pm for 
the 3 n N  nuclear coordinates (N ceils, n atoms per 
cell), Emphasizing the configurational aspect of our 
problem we can rewrite ( la )  as 

p(X)av = E P~p~(x, pro). ( lb)  
r r l  

For X-ray scattering, where the scattering events are 
much shorter than the time periods of lattice vibra- 
tions (by a factor of about 10-6), we can also interpret 
( lb) as a time average: P,, is the (relative) frequency 
of a scattering event having taken place at the density 
distribution p,, with the nuclear configuration pro. 
Summation over all distributions p,, gives the average 

density p(X)av. According to our statements (i) and 
(ii) the Bragg scattering amplitude is the Fourier 
transform of (1), i.e. 

G ( Q ) a , , = J p ( X ) a v e x p ( i Q . x ) d x ,  (2) 

and the Bragg intensity is given by 

/(Q)Bragg = ]G(Q)av] 2. (3) 

Now we introduce the convolution approximation 
(iv). First we evaluate the position of an atom Ik 
( l - - 1 , . . . , N ,  k = l , . . . , n )  in the crystal for the 
configuration Pm as 

Pm, tk = rt + rk + Um, lk. (4 )  

U,,,tk is the position of the atom Ik, relative to a fixed 
reference position rt +rk, in the state (configuration) 
m. Let Ptk be the (spherically symmetric) distribution 
of the atom lk about its nucleus; then the average 
density is given in the convolution approximation by 

P(X)av = 2 P,,, Y~ p,k(X-- p,,.Zk). (5) 
m lk  

Since we have equal atoms in each cell (i.e. periodic- 
ity), Ptk = Pk, l = 1 , . . . ,  N. The Fourier transform of 
(5), given (4), is 

G(Q)av = Z P,,, Y~ gk(Q) exp [ iQ .  (rt +rk)] 
m Ik 

x exp ( iQ .  U,,.ik), (6) 

where gk(Q) is the Fourier transform of Plk = Pk, i.e. 
the X-ray or neutron scattering factor for the atom k 
in any cell I. Since the many energy states m of a 
crystal are very close to each other, the vibrational 
amplitudes Um.lk of the atoms are correspondingly 
close and we may replace the summation over m by 
an integration over the utk, thus also replacing the 
probabilities P,,, by a joint p.d.f. There is, however, 
a formal difficulty. We want only to describe the 
internal motions of the crystal and hence have to 
exclude translations and rotations of the whole crys- 
tal. Thus there are six redundant coordinates, which 
can be treated as dependent coordinates. For depen- 
dent coordinates, probabilities are still defined but 
p.d.f.'s are not. This forces us to express the crystal 
p.d.f, only by the set of 3 n N -  6 independent coordi- 
nates. In the material for deposit* it is shown that we 
can express the six dependent coordinates as linear 
functions of the remaining 3 n N - 6  independent 
(internal) coordinates, and that the internal coordi- 
nates u3,m-6 can still be expressed in lattice units, as 
has been done in (4) and (6). Furthermore, the six 
dependent coordinates must be chosen from (at least) 

* The evaluation of the six dependent coordinates has been 
deposited with the British Library Document Supply Centre as 
Supplementary Publication No. SUP 43916 (8 pp.). Copies may 
be obtained through The Executive Secretary, International Union 
of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. 
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three different atoms. The probability Pm that a given 
configuration Um of all n N  atoms occurs is equal to 
the probability calculated from the p.d.f, fm(U3,N-6) 
for the 3 n N -  6 independent coordinates, i.e. 

Vm = fm(U3nN-6)dU3nN-6 • (7) 

We now replace the summation over m by an integra- 
tion and obtain 

G(Q)av = ~ gk(Q) exp [ iQ .  (r /+ rk)] 
Ik 

x ~ exp (iQ.Ulk)f(U3nN_6) dU3nN_ 6. (8) 

Since the integral in (8) occurs separately for each 
single term of the sum over Ik, the integration over 
all other coordinates Urk,#utk can be performed 
directly in each term Ik, thus leading to 

~ f (U3nN-6) dUV3nN-6= flk(Ulk), (9) 

where dur3nN_6 denotes that the integration is per- 
formed only over the coordinates Urk' ~ Utk. In statis- 
tics, ftk(Ulk) is called the three-dimensional marginal 
p.d.f, of the ( 3 n N - 6 ) - d i m e n s i o n a l  joint p.d.f, with 
respect to the three coordinates Ulk. For the three 
atoms carrying the six dependent coordinates, we 
express the dependent coordinates in exp (iQ.Ulk) 
by the independent ones. Integration over u' no longer 
leads to a marginal p.d.f, for these atoms, and the 
final integration over the remaining independent 
coordinates (none, one and two) of these atoms leads 
to some unknown function of Q [instead of to the 
t.f. T(Q) as obtained in (13)]. We can neglect this 
situation in the following, since only three atoms of 
the crystal are involved. This amounts to an inac- 
curacy of 3 / n N ,  i.e. of the order of 10 -1° or less. Our 
statement (iii) (periodicity) implies that the position 
of an atom k is equally distributed in all cells l; hence 
we have 

fik(Utk)=fk(Uk), l=  1 , . . . ,  N. (10) 

We use (9) and (10), and obtain from (8) 

G(Q)av = ~ exp ( iQ .  r/) E gk(Q) exp ( iQ .  rk) 
l k 

X ~ fk(Uk) exp ( iQ . uk) dUk. (11) 

From (3) we now obtain 

I(Q)Bragg = ~ e x p ( i Q . r , )  F(Q)I 2, (12) 

where F(Q)  represents the sum over k in (11), i.e. 
the structure factor. The first factor on the right-hand 
side of (12) is Laue's interference function, which 
has the effect that the Bragg intensity can only be 
observed at the reciprocal-lattice points h =  Q/2rr. 
The t.f. which occurs in F(Q) ,  i.e. 

T k ( Q ) = I f k ( u k ) e x p ( i Q . u k ) d U k ,  (13) 

is the Fourier transform of the three-dimensional 
marginal p.d.f, fk(Uk) of the joint p.d.f, f(U3nN_6) of 
all atoms in the crystal. 

Finally, we show that fk(Uk) is also the marginal 
p.d.f, of the joint p.d.f, of all atoms in a unit cell. 
Since, in (9), the sequence of integration does not 
matter, it can be performed first over all coordinates 
at, k, referring to all other cells I ' # / .  This integration 
yields the corresponding 3n-dimensional marginal 
p.d.f.'s ft(ut) off(U3nN-6) with respect to the n atoms 
of a cell /. Since the crystal is periodic, fz(u/) is the 
same for all cells. Further integration over Uk't with 
k ' #  k yields the three-dimensional marginal p.d.f. 
fk(Uk) off/(ut)  with respect to the atom k. 

Results 

The inverse Fourier transform of the t.L is the mar- 
ginal p.d.f., which, as such, must be non-negative 
everywhere. The coupling of motions by different 
atoms in a crystal is expressed in the joint p.d.f. 
f(U3nN_6). By projection, interatomic coupling is 
transferred to the three-dimensional marginal p.d.f.'s 
fk(Uk), and thus also to their Fourier transforms, the 
t.f.'s, f(u3,,N_6) is unknown and cannot be determined 
from experimental data. In the harmonic approxima- 
tion, however, f(U3nN_6) is known to be Gaussian, as 
are its marginal p.d.f.'s fk(Uk). This knowledge is 
utilized in the following paper (Scheringer, 1987), 
and some general results are derived clarifying how 
interatomic coupling affects the vibration tensors of 
the individual atoms. 

Explicit coupling terms in the expression for the 
Bragg intensity, as found by Kashiwase [1965, 
equation (2.24)] and as used by Pryor & Sanger (1970, 
Appendix 3), are not appropriate since they do not 
contribute to the thermal average. In accordance with 
(3) and (12), the Bragg intensities can always be 
represented by structure factors. This conclusion also 
seemed to be reached by Cochran & Cowley (1967, 
p. 126) (for elastic scattering). 

In anharmonic lattice-dynamical calculations of 
the t.f., it is sufficient to calculate the thermal average 
( exp ( iQ .Utk ) )  [as was done by Krivoglaz & 
Tekhonova (1961) and Wolfe & Goodman (1969)]. 
This is shown by (6) and (8). Calculation of the 
average (exp[iQ.(Ulk--Urk,)]), a s  was done by 
Maradudin & Flinn [1963, equation (1.3)] and 
Kashiwase [1965, equation (2.1)] and stated by Willis 
& Pryor [1975, equations (5.4) and (5.6)], implies 
an unnecessary complication and may have led to 
the exror in Kashiwase's [1965, equation (2.24)] 
result. 

The vector rk describing the position of an atom 
in a unit cell can be arbitrarily defined in many 
different ways (being the same for each cell l). This 
is obvious in our calculation, from (4) onwards. At 
any rate, r k serves as the origin of the vibrational 
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coordinates Ulk , i.e. Ulk--~.0 at rk. The consequences 
of this situation concerning the meaning of the 
positional parameters are discussed elsewhere 
(Scheringer, 1986). 

In establishing anharmonic p.d.f.'s, parameters of 
an 'effective potential' or 'isolated-atom potential' are 
often used (Willis & Pryor, 1975, ch. 5; Zucker & 
Schulz, 1982). Our basic result that any atomic p.d.f. 
has to be conceived as a marginal p.d.f, of the crystal 
p.d.f, gives rise to the following interpretation: the 
parameters of the effective potential describe the 
motions of an atom as if it would vibrate under this 
potential, no matter where the remaining atoms of  the 
crystal are actually located (but within the limits set 
by the crystal p.d.f.). Note the difference of this inter- 
pretation from the common interpretation with the 
Einstein model (Willis & Pryor, 1975, p. 12) where 
the atoms are assumed to vibrate independently. 

I am indebted to Professor Dr V. Mammitzsch, 
Mathematisches Institut der Universit~it Marburg, for 
a discussion on the treatment of dependent variables 
in statistics. I thank Dr B. T. M. Willis, Oxford, and 
Professors A. J. C. Wilson, Cambridge, H. B. Biirgi, 
Bern, W. Prandl, Tiibingen, and V. Schomaker, 

Seattle, for their constructive criticism of earlier 
versions of this paper. 
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Abstract 

In the harmonic approximation of thermal vibrations, 
the probability density function (p.d.f.) of a crystal 
is discussed and the p.d.f, of a single atom is derived. 
It is shown that Bragg intensities and temperature 
factors are affected by statistical dependences among 
the vibrational coordinates but not the covariances 
(correlations) of the atoms in the crystal. The relation 
between statistical dependences and interatomic force 
constants is established, and effective potential 
parameters are derived as functions of the interatomic 
force constants. It is shown that a decrease in the 
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diagonal elements or an increase in the off-diagonal 
elements of statistical dependence increases the 
mean-square amplitudes (u 2) of the atoms. An 
increase in statistical dependence between different 
coordinates of space always increases the (u2). Some 
experimental results ((u2)) in different types of struc- 
tures are interpreted with simple models of statistical 
dependence. 

1. Introduction 

The effect of coupling the motions of different atoms 
in crystals on Bragg intensities and atomic vibration 
tensors is difficult to analyse. Vibration tensors deter- 
mined by means of diffraction experiments support 
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